Source code for adam.parametric.pytorch.computations_parametric

# Copyright (C) Istituto Italiano di Tecnologia (IIT). All rights reserved.

import warnings

import numpy as np
import torch

from adam.core.constants import Representations
from adam.core.rbd_algorithms import RBDAlgorithms
from adam.model import Model
from adam.parametric.model import ParametricLink, URDFParametricModelFactory
from adam.pytorch.torch_like import SpatialMath


[docs] class KinDynComputationsParametric: """This is a small class that retrieves robot quantities using Pytorch for Floating Base systems. This is parametric w.r.t the link length and densities. """ def __init__( self, urdfstring: str, joints_name_list: list, links_name_list: list, root_link: str = None, gravity: np.array = torch.tensor([0, 0, -9.80665, 0, 0, 0]), ) -> None: """ Args: urdfstring (str): either path or string of the urdf joints_name_list (list): list of the actuated joints links_name_list (list): list of parametric links root_link (str, optional): Deprecated. The root link is automatically chosen as the link with no parent in the URDF. Defaults to None. """
[docs] self.math = SpatialMath()
[docs] self.g = gravity.to(torch.get_default_dtype())
[docs] self.joints_name_list = joints_name_list
[docs] self.urdfstring = urdfstring
[docs] self.representation = Representations.MIXED_REPRESENTATION # Default
if root_link is not None: warnings.warn( "The root_link argument is not used. The root link is automatically chosen as the link with no parent in the URDF", DeprecationWarning, stacklevel=2, )
[docs] def set_frame_velocity_representation( self, representation: Representations ) -> None: """Sets the representation of the velocity of the frames Args: representation (Representations): The representation of the velocity """ self.representation = representation
[docs] def mass_matrix( self, base_transform: torch.Tensor, s: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the Mass Matrix functions computed the CRBA Args: base_transform (torch.tensor): The homogenous transform from base to world frame s (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: M (torch.tensor): Mass Matrix """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF [M, _] = self.rbdalgos.crba(base_transform, s) return M.array
[docs] def centroidal_momentum_matrix( self, base_transform: torch.Tensor, s: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the Centroidal Momentum Matrix functions computed the CRBA Args: base_transform (torch.tensor): The homogenous transform from base to world frame s (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: Jcc (torch.tensor): Centroidal Momentum matrix """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF [_, Jcm] = self.rbdalgos.crba(base_transform, s) return Jcm.array
[docs] def forward_kinematics( self, frame, base_transform: torch.Tensor, joint_positions: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Computes the forward kinematics relative to the specified frame Args: frame (str): The frame to which the fk will be computed base_transform (torch.tensor): The homogenous transform from base to world frame joint_positions (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: T_fk (torch.tensor): The fk represented as Homogenous transformation matrix """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return ( self.rbdalgos.forward_kinematics( frame, base_transform, joint_positions, ) ).array
[docs] def jacobian( self, frame: str, base_transform: torch.Tensor, joint_positions: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the Jacobian relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed base_transform (torch.tensor): The homogenous transform from base to world frame joint_positions (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: J_tot (torch.tensor): The Jacobian relative to the frame """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.jacobian(frame, base_transform, joint_positions).array
[docs] def relative_jacobian( self, frame, joint_positions: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the Jacobian between the root link and a specified frame frames Args: frame (str): The tip of the chain joint_positions (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: J (torch.tensor): The Jacobian between the root and the frame """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.relative_jacobian(frame, joint_positions).array
[docs] def jacobian_dot( self, frame: str, base_transform: torch.Tensor, joint_positions: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the Jacobian derivative relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed base_transform (torch.Tensor): The homogenous transform from base to world frame joint_positions (torch.Tensor): The joints position base_velocity (torch.Tensor): The base velocity joint_velocities (torch.Tensor): The joint velocities length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: Jdot (torch.Tensor): The Jacobian derivative relative to the frame """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.jacobian_dot( frame, base_transform, joint_positions, base_velocity, joint_velocities ).array
[docs] def CoM_position( self, base_transform: torch.Tensor, joint_positions: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the CoM position Args: base_transform (torch.tensor): The homogenous transform from base to world frame joint_positions (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: com (torch.tensor): The CoM position """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.CoM_position( base_transform, joint_positions ).array.squeeze()
[docs] def bias_force( self, base_transform: torch.Tensor, s: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the bias force of the floating-base dynamics ejoint_positionsuation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (torch.tensor): The homogenous transform from base to world frame s (torch.tensor): The joints position base_velocity (torch.tensor): The base velocity joint_velocities (torch.tensor): The joints velocity length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: h (torch.tensor): the bias force """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.rnea( base_transform, s, base_velocity.reshape(6, 1), joint_velocities, self.g, ).array.squeeze()
[docs] def coriolis_term( self, base_transform: torch.Tensor, joint_positions: torch.Tensor, base_velocity: torch.Tensor, joint_velocities: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the coriolis term of the floating-base dynamics ejoint_positionsuation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (torch.tensor): The homogenous transform from base to world frame joint_positions (torch.tensor): The joints position base_velocity (torch.tensor): The base velocity joint_velocities (torch.tensor): The joints velocity length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: C (torch.tensor): the Coriolis term """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF # set in the bias force computation the gravity term to zero return self.rbdalgos.rnea( base_transform, joint_positions, base_velocity.reshape(6, 1), joint_velocities, torch.zeros(6), ).array.squeeze()
[docs] def gravity_term( self, base_transform: torch.Tensor, base_positions: torch.Tensor, length_multiplier: torch.Tensor, densities: torch.Tensor, ) -> torch.Tensor: """Returns the gravity term of the floating-base dynamics ejoint_positionsuation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (torch.tensor): The homogenous transform from base to world frame base_positions (torch.tensor): The joints position length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: G (torch.tensor): the gravity term """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.rnea( base_transform, base_positions, torch.zeros(6).reshape(6, 1), torch.zeros(self.NDoF), self.g, ).array.squeeze()
[docs] def get_total_mass( self, length_multiplier: torch.Tensor, densities: torch.Tensor ) -> float: """Returns the total mass of the robot Args: length_multiplier (torch.tensor): The length multiplier of the parametrized links densities (torch.tensor): The densities of the parametrized links Returns: mass: The total mass """ factory = URDFParametricModelFactory( path=self.urdfstring, math=self.math, links_name_list=self.links_name_list, length_multiplier=length_multiplier, densities=densities, ) model = Model.build(factory=factory, joints_name_list=self.joints_name_list) self.rbdalgos = RBDAlgorithms(model=model, math=self.math) self.rbdalgos.set_frame_velocity_representation(self.representation) self.NDoF = self.rbdalgos.NDoF return self.rbdalgos.get_total_mass()
[docs] def get_original_densities(self) -> list[float]: """Returns the original densities of the parametric links Returns: densities: The original densities of the parametric links """ densities = [] model = self.rbdalgos.model for name in self.links_name_list: link = model.links[name] assert isinstance(link, ParametricLink) densities.append(link.original_density) return densities