Source code for adam.numpy.numpy_like
# Copyright (C) Istituto Italiano di Tecnologia (IIT). All rights reserved.
from dataclasses import dataclass
from typing import Union
import numpy as np
import numpy.typing as npt
from adam.core.spatial_math import ArrayLike, ArrayLikeFactory, SpatialMath
@dataclass
[docs]
class NumpyLike(ArrayLike):
"""Class wrapping NumPy types"""
[docs]
def __setitem__(self, idx, value: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides set item operator"""
if type(self) is type(value):
self.array[idx] = value.array.reshape(self.array[idx].shape)
else:
self.array[idx] = value
[docs]
def __getitem__(self, idx) -> "NumpyLike":
"""Overrides get item operator"""
return NumpyLike(self.array[idx])
@property
[docs]
def shape(self):
return self.array.shape
[docs]
def reshape(self, *args):
return self.array.reshape(*args)
@property
[docs]
def T(self) -> "NumpyLike":
"""
Returns:
NumpyLike: transpose of the array
"""
return NumpyLike(self.array.T)
[docs]
def __matmul__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides @ operator"""
if type(self) is type(other):
return NumpyLike(self.array @ other.array)
else:
return NumpyLike(self.array @ np.array(other))
[docs]
def __rmatmul__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides @ operator"""
if type(self) is type(other):
return NumpyLike(other.array @ self.array)
else:
return NumpyLike(other @ self.array)
[docs]
def __mul__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides * operator"""
if type(self) is type(other):
return NumpyLike(self.array * other.array)
else:
return NumpyLike(self.array * other)
[docs]
def __rmul__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides * operator"""
if type(self) is type(other):
return NumpyLike(other.array * self.array)
else:
return NumpyLike(other * self.array)
[docs]
def __truediv__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides / operator"""
if type(self) is type(other):
return NumpyLike(self.array / other.array)
else:
return NumpyLike(self.array / other)
[docs]
def __add__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides + operator"""
if type(self) is not type(other):
return NumpyLike(self.array.squeeze() + other.squeeze())
return NumpyLike(self.array.squeeze() + other.array.squeeze())
[docs]
def __radd__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides + operator"""
if type(self) is not type(other):
return NumpyLike(self.array + other)
return NumpyLike(self.array + other.array)
[docs]
def __sub__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides - operator"""
if type(self) is not type(other):
return NumpyLike(self.array.squeeze() - other.squeeze())
return NumpyLike(self.array.squeeze() - other.array.squeeze())
[docs]
def __rsub__(self, other: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""Overrides - operator"""
if type(self) is not type(other):
return NumpyLike(other.squeeze() - self.array.squeeze())
return NumpyLike(other.array.squeeze() - self.array.squeeze())
[docs]
def __neg__(self):
"""Overrides - operator"""
return NumpyLike(-self.array)
[docs]
class NumpyLikeFactory(ArrayLikeFactory):
@staticmethod
[docs]
def zeros(*x) -> "NumpyLike":
"""
Returns:
NumpyLike: zero matrix of dimension x
"""
return NumpyLike(np.zeros(x))
@staticmethod
[docs]
def eye(x: int) -> "NumpyLike":
"""
Args:
x (int): matrix dimension
Returns:
NumpyLike: Identity matrix of dimension x
"""
return NumpyLike(np.eye(x))
@staticmethod
[docs]
def array(x) -> "NumpyLike":
"""
Returns:
NumpyLike: Vector wrapping *x
"""
return NumpyLike(np.array(x))
[docs]
class SpatialMath(SpatialMath):
def __init__(self):
super().__init__(NumpyLikeFactory())
@staticmethod
[docs]
def sin(x: npt.ArrayLike) -> "NumpyLike":
"""
Args:
x (npt.ArrayLike): angle value
Returns:
NumpyLike: sin value of x
"""
return NumpyLike(np.sin(x))
@staticmethod
[docs]
def cos(x: npt.ArrayLike) -> "NumpyLike":
"""
Args:
x (npt.ArrayLike): angle value
Returns:
NumpyLike: cos value of x
"""
return NumpyLike(np.cos(x))
@staticmethod
[docs]
def outer(x: npt.ArrayLike, y: npt.ArrayLike) -> "NumpyLike":
"""
Args:
x (npt.ArrayLike): vector
y (npt.ArrayLike): vector
Returns:
NumpyLike: outer product of x and y
"""
x = np.array(x)
y = np.array(y)
return NumpyLike(np.outer(x, y))
@staticmethod
[docs]
def vertcat(*x: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""
Returns:
NumpyLike: vertical concatenation of x
"""
if isinstance(x[0], NumpyLike):
v = np.vstack([x[i].array for i in range(len(x))])
else:
v = np.vstack([x[i] for i in range(len(x))])
return NumpyLike(v)
@staticmethod
[docs]
def horzcat(*x: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""
Returns:
NumpyLike: horrizontal concatenation of x
"""
if isinstance(x[0], NumpyLike):
v = np.hstack([x[i].array for i in range(len(x))])
else:
v = np.hstack([x[i] for i in range(len(x))])
return NumpyLike(v)
@staticmethod
[docs]
def skew(x: Union["NumpyLike", npt.ArrayLike]) -> "NumpyLike":
"""
Args:
x (Union[NumpyLike, npt.ArrayLike]): vector
Returns:
NumpyLike: the skew symmetric matrix from x
"""
if not isinstance(x, NumpyLike):
return -np.cross(np.array(x), np.eye(3), axisa=0, axisb=0)
x = x.array
return NumpyLike(-np.cross(np.array(x), np.eye(3), axisa=0, axisb=0))